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Is it possible to express the problem of calculating turbulent flame speeds as an 
eigenvalue problem that is analogous to the laminar flame speed problem? It is 
argued for grid turbulence that the answer is affirmative, and some benefits of 
pursuing such a calculation are exploited for the limiting case of a first-order 
reaction with vanishingly small heat release. The streamwise turbulent transport 
of reactant occupies a central role in the analysis. The equation governing the 
ensemble average of this quantity assumes different simplified forms in the 
limits of small-scale and large-scale turbulence. The criterion which is obtained 
for separating the small-scale and large-scale regimes differs from that of 
Damkohler and also from that of Kovasznay and Klimov. In  the small-scale 
rbgime, turbulence produces a spatially varying diffusivity, the form of which 
can be ascertained only through an investigation of non-linear equations describ- 
ing the statistical dynamics of production and decay of the velocity-concen- 
tration correlation. In  the large-scale regime, which is of greater practical 
importance, the ensemble average of the streamwise turbulent reactant flux 
satisfies a linear ordinary differential equation whose solution for the growth and 
decay of the flux contains effects resembling wrinkling of the laminar flame, 
increasing of the effective diffusivity and augmentation of the effective reaction 
rate. An exact solution to the linear eigenvalue problem which arises in the large- 
scale limit reveals that turbulence enhances mean reactant consumption in the 
upstream portion of the flame and retards reactant consumption downstream. 
Formulas are given for the increase in flame speed and the increase in flame 
thickness that are produced by turbulence in the large-scale limit. Since the 
equations are relatively tractable in the large-scale limit, it is suggested that 
further study of these equations may yield improved descriptions of realistic 
turbulent flames. 

1. Introduction 
Turbulent reacting flows are difficult to analyze. While questions remain con- 

cerning the dynamics of turbulent decay downstream from a grid, in comparison 
the dynamics of turbulent flames are a complete enigma. The first true advance 
in our understanding of turbulent flame propagation can be attributed to Dam- 
kohler (1940) who reasoned that turbulence should increase transport rates within 
a flame for turbulent scales sufficiently small compared with the laminar flame 
thickness and wrinkle the laminar flame without affecting its internal dynamics 
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for sufficiently large turbulent scales. Based only on the observation that in 
engineering applications the scale of energy-containing eddies usually exceeds 
the thickness of a laminar flame, many flame theoreticians attempted to calculate 
turbulent flame speeds by analyzing the motion of a wrinkled laminar flame in a 
turbulent field. The most thorough of these analyses were performed by Tucker 
(1956) and by Richardson (1956). 

Tucker’s calculation, which can be viewed as a generalization of Batchelor’s 
(1953, pp. 68-75) calculation of the change in a turbulent field produced by 
a sudden contraction, exhibits the disturbing result that the turbulent flame 
speed approaches infinity as the heat released by the flame approaches zero. 
Perhaps this anomaly is a consequence of the linearization in which the angle 
between the local normal to the laminar flame and the direction of propagation 
of the turbulent flame is presumed small, but why the linearization should fail 
only for small heat release is unclear. Richardson’s results share the small-angle 
assumption while exhibiting no such anomaly, but they are unrealistic in that 
for mathematical convenience the turbulent velocity field is approximated as 
strictly one-dimensional. Both analyses, and indeed all published wrinkled 
laminar flame theories of turbulent flames, treat the local laminar flame speed 
as a constant, a practice which may be hazardous since Landau (1944), Markstein 
(1951) and others have shown that under this condition plane laminar flames are 
unstable to disturbances of all wavelengths in the approach flow. The stability 
analyses demonstrate that when a reasonable dependence of flame speed on 
flame curvature is introduced, laminar flames are stable only to disturbances of 
wavelength smaller than a critical value. If the plane laminar flame is unstable 
to some of the components comprising the incident turbulent field, then what 
significance emerges from a calculation of the response of the laminar flame to 
such a turbulence? The future of wrinkled laminar flame theories for turbulent 
flames will become promising only after improvements are achieved in under- 
standing the dynamical behaviour of laminar flames in non-uniform velocity 
fields. 

An important step toward improving this understanding has recently been 
taken by Klimov (1963) who studied laminar flame structure and laminar flame 
speeds in flow regions of uniform shear. Klimov demonstrated that non-uniform 
velocity fields modify both flame structure and flame speed. He discovered that 
the character of the modifications depends on the value of a quantity y which is 
defined as the ratio of a representative velocity gradientj- in the turbulent field 
t o  the reciprocal of a representative residence time in the flame. For small values 
of this parameter, changes in flame speed and flame structure are small but non- 
zero; for large values phenomena such as negative flame speeds and flame 
extinction occur. 

At the present time it would be interesting to investigate the relationship of 
Klimov’s results to the stability analyses of Landau and others and to proceed 
from there to a proper theory of the wrinkled laminar flame model of turbulent 

t The gradient in the direction normal to the flame of the component of velocity normal 
to  the flame, or, equivalently, the time rate of change of the logarithm of the area of an 
element of the flame surface. 
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flames. This probably can be accomplished only for small values of y since 
Klimov’s analysis tends to indicate that turbulent flames with large values of y 
will be too complex to be analyzed in terms of laminar flame dynamics. Instead 
of pursuing the development of wrinkled flame theory for small values of y ,  we 
initiate in this paper an alternative approach to turbulent flame theory which in 
principle is not restricted a priori to small values of y. 

In  place of a detailed description of the dynamics of flamelets within the turbu- 
lent flame brush, we content ourselves with a partial statistical description of the 
turbulent flame interior, in the hope that the description can be made complete 
enough to reveal certain gross flame characteristics. The gross characteristic of 
primary practical interest is the turbulent flame speed, and the nearly single- 
minded objective of the present study is to determine the turbulent flame speed. 
In  this respect, the present study differs from other studies in the statistical 
theory of turbulence, many of which appear to be directed toward discovering 
anything that can be discovered about turbulence. There is a resemblance between 
the present study and, for example, that of Corrsin (1952) whose main objective 
was to determine the turbulent heat transfer c0efficient.t But there is no re- 
semblance between the present study and those focusing on, say, two-point 
correlations and their spectral resolutions, because from the viewpoint of the 
present analysis these quantities are not of direct relevance to the turbulent 
flame speed. 

After satisfying ourselves, with certain reservations, that a turbulent flame 
speed can be defined in a manner completely analogous to the way in which 
laminar flame speeds are defined, we specialize our analysis t o  the case of a first- 
order reaction with negligible heat release. The purpose of the specialization is to 
produce simpler equations that reveal more easily some fundamental aspects 
of the approach. The simplified equation for the average streamwise turbulent 
reactant transport possesses two limiting cases-the limits of small and large 
turbulence scales. The effects of turbulence on flame propagation are investi- 
gated in these limits, and identification is made of the specific parameter whose 
value determines which of the two limiting cases is the better approximation. 

This parameter, which is essentially the ratio of the laminar flame thickness 
to a Taylor-like microscale for the decay of the one-point streamwise velocity- 
concentration correlation, differs from the simplest interpretation that can be 
ascribed to Damkohler’s original parameter and also from Klimov’s parameter y ,  
which in essence had earlier been introduced by Kovasznay (1956). Kovasznay 
interpreted y as the ratio of the turbulent vorticity (more precisely, root-mean- 
square velocity fluctuation divided by Taylor microscale) to the velocity gradient 
in a laminar flame, a view which differs from Klimov’s physical interpretation. 

t There are, of course, many differcnces: Corrsin utilizes both Eulerian and Lagrangian 
viewpoints while the present study employs only the Eulerian viewpoint. Corrsin con- 
siders both early and late stages of decay of heat-transfer and r.m.6. temperature fluctua- 
tion fields subjected to a constant mean temperature gradient, while the present analysis 
pays little heed to the ambient stage of decay, but instead focuses attention on the 
dynamical growth and decay of the turbulent mass-transfer field when it is subjected to 
the complicated mean concentration field extant in a flame. The similarity lies in the 
character of the objective more than in the subject matter. 

26-2 
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There is no logical contradition in the fact that our parameter differs from y, 
since Klimov’s analysis treats individual laminar flamelets within the turbulent 
flame while the present analysis treats the ensemble of these flamelets. 

The present theory demonstrates that in the limit of large-scale turbulence, 
the average flame structure and the turbulent flame speed can be calculated 
relatively easily. Results are given for the turbulent flame speed, flame thickness 
and flame structure in the large-scale limit for first-order reactions without heat 
release. The modifications that would be involved in carrying out a corresponding 
calculation for finite heat release and arbitrary reaction orders are indicated. 
These modifications do not complicate the analysis too severely, since instead 
of being an eigenvalue of two simultaneous ordinary differential equations, the 
flame speed becomes an eigenvalue of k simultaneous ordinary differential 
equations, where k is a finite number whose value depends on the reaction order 
and on the activation energy. Thus, in some respects the approach introduced 
here appears promising. 

2. Statement of the problem 
We shall consider a particular system which has often been set up in the 

laboratory (see figure 1). A steady plane one-dimensional, low-speed flow of 
a premixed combustible fluid passes through a plane turbulence-producing grid 
oriented normal to the flow direction. At distances greater than roughly 10-grid 
mesh dimensions downstream from the grid, the mean flow is again steady and 

turbulence 

X 

FIGURE 1. Schematic diagram of model. 

one-dimensional, and if the fluid were unicomposition and non-reacting, then 
numerous characteristics of the fluctuating turbulent velocity field would be 
known from previous experimental and theoretical investigations. We shall 
assume that chemical reactions proceed to a negligible extent in this distance, 
so that except for questions concerning the production of composition and 
temperahre fluctuations by the grid, the character of the turbulent field at 
about 10 or more mesh dimensions downstream may be taken as well established. 
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A turbulent flow, with properties that vary slowly in the flow direction through 
decay of turbulence, thus approaches a chemical reaction region identifiable as 
a steady plane one-dimensional turbulent flame. 

It is well known that for laminar flames with one-step Arrhenius rate kinetics, 
no finite solution exists for the laminar burning velocity (the velocity at which the 
combustible material must flow into the flame for the position of the flame to 
remain stationary in space) unless the governing equations or boundary con- 
ditions are modified by introducing one of a number of artifices based upon 
physical understanding of the flame propagation process; e.g. see Williams (1965, 
chapter 5 ) .  One such artifice is the concept of an upstream flame holder that 
extracts heat from the fluid and serves to ‘stabilize’ the flame; for a reaction 
whose over-all activation energy is not too small, very low (but not zero) amounts 
of heat extraction by the flame holder lead to calculated burning velocities that 
are finite and are insensitive to the precise value of the rate of heat extraction. 
In  the system under study, the turbulence-producing grid can conveniently 
serve a dual purpose, acting secondarily as a flame holder when the kinetic model 
requires an artifice to make the flame speed finite. 

We wish to obtain the turbulent flame speed, which is defined as the steady- 
state value of the mean velocity V in the flow (x) direction that must exist in the 
nearly uniform turbulent flow approaching the flame for the mean position of 
the flame to remain stationary. In  view of the fact that there exists a laminar 
flame speed uniquely dependent upon the thermodynamic, thermochemical, 
transport and chemical-kinetic properties of the system, it seems reasonable 
that there should exist a turbulent flame speed uniquely dependent upon these 
same properties plus the statistical properties of the turbulent field. 

Knowledge of the turbulent flame speed is vital for predicting the performance 
(e.g. heat release rates, critical chamber lengths, etc.) of practical combustion 
equipment. However, it may be worth emphasizing that analysis of the system 
illustrated in figure 1 will not necessarily yield correct turbulent flame speeds 
for systems in which the flame does not propagate normal to the direction of the 
mean flow. For example, a flame spreading obliquely from a bluff body flame 
holder in a turbulent flow may exhibit a mean velocity component normal to 
the approach flow that differs from the flame speed obtained with the present 
model (for a flow with the same turbulent characteristics) because of a different 
type of flame-induced modification in the turbulent fields resulting from the non- 
planar geometry. The present model has been adopted primarily because of its 
geometrical simplicity and secondarily because it is representative of some 
situations encountered in practice. It seems unlikely that the understanding 
necessary for obtaining turbulent flame speeds in systems of more complex 
geometries can be developed without first developing a correspondingly deep 
understanding of the system illustrated in figure 1. Symmetries implied by 
figure 1 are discussed in appendix A. 

A relevant experimental question that arises is whether the turbulent flame 
speed defined here exists. Turbulent flames have often been stabilized behind 
grids, but it is not entirely clear that these flames are not more or less attached 
t o  the grids by fingers extending upstream in the wakes. The grid may too 
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literally act as a flame holder, in that each bar of the grid may separately hold 
a flame. If this occurs, then it is questionable whether a truly statistical situation 
can be established before the flame develops. Ensemble analyses may not be 
relevant for determining the flame speed. The validity of the viewpoint proposed 
in this paper can be tested experimentally by passing the turbulent combustible 
flow downstream from the grid through a slowly diverging channel, causing the 
mean velocity V to decrease gradually with increasing x. If a turbulent flame 
speed as defined herein exists, then the turbulent flame should remain stationary 
at the value of x where V equals the flame speed. This experiment has not been 
performed. Therefore, we assume that the flame speed exists experimentally 
and proceed to consider its mathematical existence. 

3. Existence of a turbulent flame speed 
The manner in which the laminar flame speed appears as an eigenvalue of the 

conservation equations is summarized in appendix B. Here we consider whether 
the turbulent flame speed can be defined in a corresponding manner, i.e. we 
search for equations similar to (B 1)  and (B 2). 

The species conservation equation for a representative reactant, whose mass 

a fraction is Y ,  is 

at (1) - (p  Y )  + v . (pv Y )  - v . (pDV TI’) = 21)) 

where p is density, v is velocity, D is a multicomponent diffusion coefficient and 
w is the mass rate of production of the reactant in question. The quantities p, 
v, D and w are related to Y through other conservation equations, the state 
equations, cxpressions for transport properties, and the phenomenological 
chemical kinetic equations. We shall let a superior bar denote an ensemble mean 
and a prime identify the departure of a variable from its ensemble mean value. 
Taking an ensemble average of (1) yields 

__ -~ a -  a -  - 

at 
- (p Y )  +at (p’ Y’)  + v.  (pvY)  + v .  [ P ( V ‘ Y ’ )  +Y(p’Y’) 

- + 7 (p” )] + v . (p’v’ y’ ) - v . [(pD) VT] - v . [(pD)‘ v Y’] = w. ( 2 )  

Since means are independent of time in stationary turbulence and since one- 
point vector means must parallel the axes of symmetry in axi-symmetric turbu- 
lence (see appendix A), (2) reduces to 

~- 
.~ + P(V’  Y’ )  + @(p’) + P ( p T )  + (p‘w’ Y’) - 

where w’ is the x component of v’. 
If t.he continuity equation 

apjat + v.  (pv) = o 
is subjected to an ensemble average and use is made of the stationary and axi- 
symmetric implications cited above, it is found that 

~ 

pV + (p’w’) = wi = constant. ( 5 )  
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Utilizing (5) in (3) yields 

407 

where the turbulent mass diffusivity has been defined as 

The definition of (pD), appearing in (7 )  is rather complex and may often be 
useless for accurate calculations. The reason for the manipulation stems from the 
fact that a complete solution to the problem would yield (pD), as a function of x. 
Hence it follows that (6) formally resembles (B l), and that imposing the boundary 
conditons (B 2 )  on 7 may therefore yield a solution for Y ( X )  only for a particular 
eigenvalue m. This value would then provide a turbulent flame speed determined 
in a manner analogous to the way in which the laminar flame speed is determined. 

The preceding development neither proves that m is an eigenvalue of (6) nor 
provides a method for calculating m accurately, since all of the moment problems 
of turbulence remain [see (7)]. However, if (pD),, (q), and ;Lij could be estimated 
in terms of and x, then the same methods that are employed in laminar flame 
theory could be utilized in (6) to obtain m. One might venture to state that some 
sort of physical estimate for (p-), (pD), and W can always be made. Thus, it may 
not be too poor an approximation to replace ( p 3 )  by its average laminar value, 
neglect (pD)’, (p’w’ Y’) and (p’ Y’),  estimate (w’ Y’) from the relatively well-known 
properties of the turbulence a short distance downstream from the grid, and 
replace W by its laminar value w(7) plus a correction term estimated from the 
properties of the turbulence a short distance downstream from the grid. A very 
simple set of approximations of this kindis (v’) = (r2)*, (pD)‘ = 0, (p’w‘ Y’) = 0 ,  
(p‘Y’) = 0 ,  W = LO(?). The proper question therefore appears not to be whether 
the turbulent flame speed problem can be cast as an eigenvalue problem but 
rather how accurately the turbulent flame speed can be calculated when the 
problem is so cast. In  the following sections we investigate this question for 
a system in which most of the complexities are eliminated. 

__ ~ 

-. 

__ 

4. A turbulent flame with vanishing heat release and with a first-order 
reaction 

To begin a more thorough investigation of the properties of (6), suppose there 
is only one reactant, the reaction is of first order with respect to this reactant, 
and the heat release is small compared with the initial thermal enthalpy of the 
system, so that the density may be assumed to be constant. Although there exist 
chemical reactions for which these assumptions are approximately valid, these 
reactions are of little or no interest in combustion, and therefore the present 
treatment is best considered to represent an attempt to uncover a few of the 
elements that must appear in analyses of realistic flames. The analysis is not 
trivial even under these highly restrictive assumptions. 
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The assumptions concerning the reaction rate reduce (1) to a linear equation 
in Y and enable us to write w in the form 

w = -woY,  (8) 

where wo is a positive constant. For this reaction rate function a pseudostationary 
value of the laminar flame speed does not exist, and the calculated flame speed 
will depend upon the value assigned to Yi in (B 2). However, this undesirable 
aspect of the hypotheses does not necessarily affect the relationship between the 
laminar and turbulent flame speeds. A useful simplification in the turbulent 
flame analysis produced by (8) is that w(y) = w(Y) .  

In addition to eliminating three terms in (7),  the assumption concerning the 
heat release (p  = constant) has the extremely useful effect of decoupling the 
equation for the velocity field from the equation for the concentration field. 
The statistics of the velocity field may therefore be assumed known in studying 
the turbulent flame speed problem, and we shall investigate the properties of a 
concentration field imposed on a known velocity field, in an attempt to ascertain 
what the mean flow velocity must be for the concentration field to possess a 
solution satisfying turbulent flame boundary conditions. 

Finally, we shall also assume that the diffusion coefficient D is constant, and 
we shall equate D to the kinematic viscosity (i.e. the Schmidt number will be 
taken to be unity). The latter approximation is very good for gases, and the former 
is consistent with the assumption of small heat release. 

Under the stated assumptions, (1) becomes 

ay -ay 
-+v----+v.(v‘Y)-Dv2Y = - ( w o/P) y, 
at ax (9) 

the continuity equation is V.V’  = 0, (10) 

and the momentum conservation equation becomes 

avf -avf 
- + 7) - + (v’ . V) v’ = - V(p/p) + DCZV’, 
at ax 

where ;ij is the constant mean velocity in the x direction, V’ is the difference 
between the vector velocity and its mean value, and p is pressure. As may easily 
be inferred from (5),  (6) and (7) under the current set of restrictions, an ensemble 
average of (9) yields 

aT a 2 7  a -  G--D-+ wo 7 = -- (V’Y’), 
ax ax2 ( p )  ax 

where v‘ is the x component of V’ and Y’ = Y - 7. The only term in (12) that is 
not present for laminar flow is the one involving v‘ Y‘, which is the diffusional 
analogue of a Reynolds stress since pv- represents the mean value of the mass 
of reactant per unit area per second transported by the turbulent fluctuations 
across a plane normal to the x axis and moving with velocity V in the x direction. 
Equation (12) cannot be solved for the turbulent burning velocity unless (v’ Y’) 
can be determined in some manner. 

~ 

~ 



An approach to turbulent flame theory 409 

An equation for ( v T )  can be obtained by the classical approach of multiplying 
the equation for Y‘ by v’, multiplying the equation for v‘ by Y’, adding the results 
together and averaging. The equation for Y‘ is 

(w, 1 aY’ -aY’ ,aF a ~ 

-+v-+v ---(v’Y’)+V.(v’Y’)-DVZY’ = - 0 Y’, (13) at ax ax ax 

which may be obtained by subtracting (12) from (9) and employing (10). The 
equation for v’ is the x component of (1  1). The operations stated above yield 

- 
where symmetry conditions have been employed. As expected, (14) for (v’Y’) 
contains (on the right-hand side,) terms involving means other than (v‘) and P. 
However, certain observations can be made conceriiing these terms. 

5. Properties of mass-flux equation 
The first term on the right-hand side of (14) causes no analytical difficulty 

under our present assumptions because Tz is a known function of x when the 
velocity field is known. This term accounts for production of (v‘ I“) by the mean 
concentration gradient. 

Terms of the form of the second term on the right-hand side of (14) appear in 
analyses of homogeneous, isotropic turbulent fields; they account for viscous 
dissipation [dissipation of (v‘ Y‘) in the present case] and are often written as the 
ratio of the quantity being dissipated to the square of a characteristic length. 
We shall therefore introduce as a definition 

__ 

- 

_- 
[(Vv’).(Vy’)] E (V‘Y’)  (1,2+2Ey2), (15) 

in which 1, and 1, are characteristic lengths in the x direction and in a direction 
normal to x, respectively (explicitly, 

and similarly for I , ) .  Since the x direction is special, it is necessary to allow for 
the possibility of two different lengths in the present problem. Since 1, and 1, are 
permitted t o  be functions of x, (15) is exact by definition; we have merely trans- 
ferred the problem of computing the left-hand side of (15) to the problems of 
computing lz and 1,. We note, however, that unlike corresponding lengths for 
(p) and (y’2), there is no guarantee that 1; and 1: will be positive. It is possible 
for conditions to occur under which viscous-diffusive effects tend to increase 
the magnitude of (v’Y’), causing Z, and/or E ,  to be imaginary. Nevertheless, (15) 
may give an indication of the order of magnitude of the dissipation term, because 

~ 
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1, and 1, might be expected to be roughly of the order of the Taylor microscale of 
the velocity field. 

The last two terms in (14) both involve means of products of three fluctuating 
quantities, each of which has a zero mean value, the first term manifestly so and 
the second term through (10) and (ll).? One might note that in the present 
problem, p / p  is unaffected by the flame; it is a property of the velocity field which 
is presumed known and which (being grid-produced turbulence) empirically is 
inferred to exhibit a pressure-velocity relationship that does not differ greatly 
from that of homogeneous turbulence. Although the last two terms in (14) exert 
a profound influence on the dynamics of the decay of turbulent eddies, by com- 
paring the next-to-last term with the first term on the left-hand side it is readily 
inferred that the last two terms are small in this particular equation provided 
that v’ < V. The flame-produced changes in ( v l ) ,  introduced through d F / d x ,  
outweigh the turbulent spectral transport terms. It therefore does not appear 
to be grossly unreasonable to neglect the last two terms in (14) provided that 
a representative fluctuation velocity, e.g. the turbulence intensity (T2)*, is small 
compared with the mean velocity 3, as is generally true for grid turbulence. 

If we assume that the fluctuation velocity is small compared with the mean 
velocity, then (14) can be written as 

- aF 
ax = - v ’ ~ - ,  (16) 

- ___ 
Since v ‘ ~  is known, (16) becomes a linear equation involving only (v’Y’) and 

as unknown functions, provided that I is assumed known. Equations (12) and 
(16) then constitute two coupled linear ordinary differential equations which, 
under the present set of assumptions, should serve to determine the value of the 
turbulent flame speed ;i? when appropriate boundary conditions are imposed. 
The turbulent flame speed thus appears as an eigenvalue of two coupled equa- 
tions instead of the single equation obtained in the laminar case. It will be noted, 
however, that many restrictions were needed and much of the dynamics of the 
turbulence had to  be suppressed in order to arrive at a prescription for computing 
the turbulent flame speed at  the present low level of complexity. 

6. Parameter defining limits of turbulent scale 
Since triple correlations are negligible only when the turbulence intensity is 

sufficiently low for the effect of the turbulence on the flame to be small, in (16) 
V will be of the same order of magnitude as v, and the characteristic distance over 
which quantities involving Y change appreciably will be of the order of S,, 
where w, and 8, are defined in appendix B. Hence the first three terms in (16) 

t The divergence of (11) yields V 2 ( p / p )  = - v. [(v’. v) v’] when use is made of (10). 
This implies that p/p  can be related to the space integral of a function involving v’ quad- 
ratically. 
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are all of the order of (D/SZ) (v’ Y’). Two limiting cases can then be distinguished 
in ( 1 6 )  : if SL 9 I Z/.J 61 , then (16) reduces approximately to 

__ 

i%P dF (v’ Y’) = -~ - 
6 0  dx’ 

while if SI, < ll/,/6\, then the term involving i is negligible and (16) becomes 

ax ax2 

The transition rhgime, in which (16) must be used instead of either (18) or (19)) 
occurs in the neighbourhood of K = 1, where 

K = J6SL/ltl. (20) 

It can be seen from (15) and (17) that the condition K = 1, separating the 
regimes of large-scale and small-scale turbulence, can be expressed in the form 

__ ~ - _  
~s;)([(vv’). ( v ~ ’ j ] / ( i T ) ) ~  = 1, 

where the angular brackets imply a mean value in the flame zone. This indicates 
that the length I i/J 61 to which SL is equal in the transition region is roughly 
interpretable as the square root of  the product of a length characteristic of the 
gradient of the velocity fluctuation field and a length characteristic of the 
gradient of the reactant concentration fluctuation field. The condition K = 1 
therefore differs from that of Damkohler viz. SL = d, where d is a characteristic 
eddy dimension, and also from that of Kovasznay and Klimov, viz. y = 1, which 
according to Kovasznay’s interpretation can be expressed approximately as 

( S M )  ([(w. ( v w / 5  = 1 

in the present notation. The present criterion differs conceptually from both of the 
earlier ones in that the concentration field is elevated to a status equal to that 
of  the velocity field. It differs further from that of Kovasznay and Klimov in 
that vL does not appear. 

A numerical comparison o f  the three turbulent scale criteria cannot be given 
properly because of the imprecision of Damkohler’s definition of eddy dimension 
and because of absence of information concerning the dynamics of the turbulent 
concentration field which appears in the present criterion. Merely to obtain some 
sort of comparison, let us assume that Y’ can be replaced by v‘ in our criterion. 
Let us also define Damkohler’s eddy dimension d by the equation for the rate 
of decay of kinetic energy, 

(v“L)%/d = D[(Vv’). (VW’)], 

so that d approximately equals the reciprocal of a wave-number characteristic 
of the energy-containing part of the spectrum. When the relationship vL = D/S,, 
which follows from (B 3) and (B 4), is used to eliminate vL from the criterion of 
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Kovasznay and Klimov, then simple algebra produces the following comparison 
of the three criteria: 

(21) 

Here the Reynolds number of the turbulence is defined as R E (v’2)*d/D. At 
R = 100, (21) shows that the critical value of d/8, is 1 for Damkohler’s criterion, 
21 for the Kovasnay-Klimov criterion, and 14 for the new criterion. Thus, the 
present criterion would appear to lie between the two earlier ones, numerically 
and also in respect to the functional dependence on R. For representative values 
of R, the present criterion appears to lie closer to that of Kovasznay and Klimov. 
On the other hand, if Damkohler’s eddy dimension were taken to be 1i/,/ 61 then 
his criterion would agree with the present one. The comparisons are not entirely 
clear-cut. Ignorance of the dynamics of the composition fluctuation field prevents 
accurate comparisons from being made for the present criterion. 

i Damkohler: 8, = d,  
Kovasznay-Klimov: 8, = Btd/Rf, 
present study: 8, = d/(2R)&. 

7. Limit of small-scale turbulence 
Although precise criteria are not available for defining the range of validity 

of (18) or (19), the limits nevertheless exist. I t  is therefore of interest to examine 
the nature of the solutions in these limits more thoroughly. 

In the limit of small-scale turbulence, substitution of (18) into (12) yields 

The pair of coupled differential equations governing the turbulent flame speed 
therefore reduces to a single differential equation which in fact is of exactly the 
same form as the differential equation governing the laminar flame speed. The 
only difference between ( 2 2 )  and the corresponding equation for laminar flow is 
that in place of the laminar diffusion coefficient D,  the effective diffusion co- 
efficient D + i 2 p / 6 D  appears. The second term in this expression represents the 
increase in the effective diffusion coefficient caused by turbulence; the value of 

appearing there is a known function of x under the present assumptions, but 
the value of i will be known only near x = 0 since methods for obtaining the x 
dependence of have not been considered. Nevertheless, the effect of turbulence 
on the flame thickness and the flame speed may be estimated by replacing the 
product Z2p by a constant average vdue in the flame (l%%) which may, for 
example, be roughly approximated as the value near x = 0. The same reasoning 
that leads to the laminar expressions for 8, and v, then shows us that 

where 6, is the thickness of the turbulent flame and ;ijT is the turbulent burning 
velocity. 

is not really known, (23) represents an explicit 
expression for the change in the flame thickness and the change in the flame speed 

Aside from the fact that 



An approach to turbulent flame theory 413 

caused by small-scale turbulence. We expect physically that the average value 
of iz in the flame will be positive and therefore that small-scale turbulence in- 
creases both the flame thickness and the flame speed. Damkohler’s deduction 
that turbulence principally modifies the effective diffusivity in this limiting 
case is placed on a firmer basis for the special system under investigation by the 
present result, which also provides a formula (viz. pizw3/6D) for the appropriate 
turbulent diffusivity for this system. However, certain reservations should be 
raised about the result. The approximation to (14), expressed by (18), constitutes 
a balance between production of (w’ Y’) (through gradients in the mean concentra- 
tion field) and viscous-diffusive decay of (v”) (for the usual case in which 
(w’Y’) is positive). Although the triple correlation terms in (14) superficially 
appear to be of higher order, to have the direct interchange between production 
and dissipation without intervening spectral transfer, as implied by (18), seems 
somewhat questionable on physical grounds unless the value of the Reynolds 
number is too small to be very interesting. This troublesome aspect, which can 
be resolved only through a more thorough investigation of i, does not arise in 
the limit of large-scale turbulence. 

__ 

____ 

8. Character of the limit of large-scale turbulence 
For the limiting case in which (19) is valid, a number of different turbulent 

burning velocity formulas have been obtained from wrinkled flame theories, 
based on different assumptions concerning the geometry of wrinkling and its 
effects. Equations (12) and (19) can help in evaluating the bases of these analyses. 
Results obtained from these two linear equations will be relatively free from 
objection since i does not appear. According to (19), the production of (v’) in 
the flame is manifest directly in the streamwise change of this quantity in the 
flame environment. Residence times in the thin flame zone are too short for 
dissipation or spectral transfer to be of significance. The situation bears some 
resemblance to Batchelor’s (1953) problem of a turbulent field passing through 
a sudden contraction. Since is approximately constant across the flame under 
the present conditions, (12) and (19) can be solved relatively easily for the turbu- 
lent flame speed and for the average flame structure. This is fortunate because 
the estimates discussed in $ 6  suggest that (12) and (19) possess an appreciably 
large range of validity ( K  < l) ,  somewhat larger than the range of the 
Kovansznay-Klimov condition y < 1 for reasonable values of the Reynolds 
number. It is of interest to discuss some qualitative aspects of the solution before 
carrying out the calculation. 

To guess the relationship between the laminar and turbulent flame speeds 
predicted by (12) and (19), one might try neglecting the second and third terms 
in (19) compared with the first. One then obtains the single equation 

which implies that [V- (v’2/V)] for turbulent flow has the same value as w for 

(24) 
laminar flow; i.e. - - 

VT M V L $ V f 2 / W L .  



414 P. A .  Williams 

This result bears some resemblance to  formulas obtained from wrinkled laminar 
flame theories; it looks most like a formula obtained by Tucker (1956). 

However, there is no reason to assume that the first term in (19) is dominant. 
If one assumes that the first two terms in (19) can be neglected in comparison 
with the third, then one obtains from (12) an equation of the form of (22) with 
the turbulent diffusion coefficient given by v"/(wo/p) = Siv'"/D; the physical 
interpretation is then the same as for small-scale turbulence (except for the 
modified formula for the turbulent diffusivity), the only effect of turbulence being 
to increase the effective diffusion coefficient. One obtains 

and a similar expression for the increase in the flame thickness. 
On the other hand, one might assume that the second term in (19) dominates 

the left-hand side. The equation derived from (12) and (19) is then somewhat 
more complicated, but if one assumes that the change in 3 is negligible across 
the turbulent flame, then one obtains an equation that is exactly the same as 
the equation governing the laminar flame speed except that the reaction rate 
term (wo/p) 7 is replaced by the term [(wo/p) + ( w T / 0 ) ]  7.t The turbulence would 
do nothing but increase the effective reaction rate, thereby yielding (25) for 
the increase in the turbulent flame speed, but actually exhibiting a decrease in 
the flame thickness due to turbulence. 

Clearly, none of these simplifications are correct. All terms in (19) must be 
retained, and two coupled equations must be solved to obtain the flame speed, 
as is done in appendix C, and discussed in the following section. 

9. Flame speed in the limit of large-scale turbulence 
Equation (C 12) shows that the fractional change in flame speed is proportional 

to the turbulence intensity e = uf2/v2 ,  with a constant of proportionality which 
depends on the laminar flame speed (through PI,), on the initial turbulent correla- 
tion between velocity and concentration fields (through go), and on any change 
in the concentration-gradient parameter P produced by turbulence (through PI). 

Since P is a rather non-physical parameter, the implications of the last term 
in (C 12) are difficult to interpret. There is no good way to determine either the 
sign or the magnitude of PI. This result constitutes a drawback of the physical 
model adopted herein. We find the drawback to be especially appalling when we 
note that if PI is large enough then the sign of (vT - wL)/wL depends on the sign 
of PI; turbulence is found to decrease the flame speed if PI is both positive and 
sufficiently large. It is necessary to introduce more physics in order to make 
statements about PI. In  the corresponding laminar models, it is well known that 
j can be interpreted as a heat loss (or a loss of a chemical species by diffusion) to 
a flame holder. If thc loss occurs primarily in a convective process for which the 

An additive constant is set equal to zero because Y --f 0 [i.e. 7 -+ 0 and Y' -+ 0, 

implying (v") -+ 01 as the reaction goes to completion a t  the downstream boundary 
of the flame where the velocity field and T2 have changed negligibly. 

_ _  
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characteristic velocity is V, then one might expect the loss, in physical co- 
ordinates, represented by the physical gradient Y& to be proportional to V. If  
this assumption is correct, then p is the same for the laminar and turbulent 
problems, and consequently p1 = 0. In  the following discussion the value of Pl 
will be taken to be zero. 

The value of the velocity-concentration correlation term go at the grid or 
flame holder can also affect the sign of (ET - vL)/wL. If go is sufficiently large and 
positive, then (ET-vL)/2rL can become negative. If p1 = 0, the condition for 
( Z I T  - vL)/vL to be positive can be expressed as go < (1 +pL) / (  1 + 2pL)2, the left- 
hand side of which is a monotonically decreasing function of pL which goes from 
1 at pL = 0 to 0 at p, = co. Positive values of go correspond to  excess turbulent 
velocities in the downstream direction being accompanied by increases in the 
reactant concentration. The magnitude and sign of go depend on characteristics 
of the turbulence-producing __ grid. If the grid produces isotropic turbulence, - then 
since (v’Y’) is a component of a vector quantity, it  follows that (v ’Y’ )~  = 0, and 
consequently go = 0. Physically, it would seem that a non-catalytic grid would 
be likely to produce (non-isotropic) velocity fluctuations without producing any 
concentration fluctuations at all; in this case the value of the quantity go would 
again be zero. Thus, the choice go = 0 appears to be reasonable. We might 
emphasize, however, that even if go = 0, the solution for g(7) given in (C 9) shows 
that g becomes positive in the flame zone; thus, the flame may be said to generate 
a positive correlation between the streamwise velocity field and the reactant 
concentration field. The flame itself enhances turbulent mass transport. 

When p1 = 0 and go = 0, (C 12) assumes a very simple form, which can be 
written in terms of physical quantities as 

This formula is not exactly the same as any of the three simplified results dis- 
cussed in the preceding section; it appears to predict an increase in burning 
velocity which is of about the same order of magnitude as, but somewhat smaller 
than, the increase predicted by any of the three preceding simplified results. 
The predicted increase also appears to be smaller than predictions of earlier 
investigators; its functional form resembles that of Shelkin (1943) or that of 
Tucker (1956) somewhat more closely than it resembles any other previous 
results. 

10. Average flame structure in the limit of large-scale turbulence 
A turbulence-produced modification in the structure of the average reactant 

concentration field is evident in (C 4) and (C 10). We may first note from (C 4) 
that if fl were equal to zero, then the definition of 7 would cause the physical 
distance over which P experiences any specified change to be less for turbulent 
flow than for laminar flow, provided that ET > v,. Thus, this scale effect tends 
to cause a turbulent flame to be thinner than the corresponding laminar flame. 
However, at  least when 6 0, the contribution of fl tends to counteract the 
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scale effect and to make the turbulent flame thicker. Further investigation is 
needed to ascertain which of the two opposing effects is greater. 

The comparison between laminar and turbulent flame structure can be 
facilitated by employing the laminar non-dimensional co-ordinate vL = XVL/D 
in the turbulent-flame formula for the x-distribution of H. The result (to f is t  
order in eL = v'"/vL) for f = T/Yo in the turbulent flame is readily found to  be 

when Pl = 0. This result is to be compared with the laminar reactant distribution 
given in (C 4). It is seen that at small values of PLqL (viz. for qL < l / P L )  the turbu- 
lent f is less than f L ,  while at large values of PLqL (viz. for qA > l / P L )  the turbulent 
f is  greater. A t  qL = l /FL,  the laminar and turbulent values off are always identi- 
cal. The result is illustrated in figure 2 ,  where f is plotted as a function of PLqL 

for various values of eL/2 (  1 + 2PL)2 with P1 = 0. Turbulence enhances reactant 
consumption near the grid of flame holder and lessens reactant consumption 
downstream. 

1 

I I I I I I 

PLVL 
FIGURE 2. Reactant concentration profiles for various values of turbulence intensity. 

3 0 1 - 3 4 5 

It is clear from these results that if the flame thickness is defined as the value 
of x at which H has decreased to e-?& times its initial value, then one will always 
find that the turbulent flame is thicker than the laminar flame provided that one 
selects a value of n greater than unity. Letting SL and 6, denote the laminar and 
turbulent flame thicknesses, respectively, we easily find that 

( 2 8 )  (ST - sL) /sL = (n- 1 )  eL/2(  1 + 2PL)'. 

Since it appears to be most reasonable to select a value of n 2 2 or 3 in defining 
flame thicknesses, we may conclude that turbulence thickens the flame, according 
to the most realistic notions of flame thickness. In  fact, by comparing ( 2 6 )  and 
(28), one finds that 

(S,-SL)/SL = (n- 1 )  ( ~ ) T - v L ) / u L  z (V~T-VL) /UL;  (29) 

the flame is thickened in proportion to the increase in flame speed. 
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The turbulent reactant flux distribution is given in (C 9). It is not difficult to 
calculate x distributions of other ensemble averages in the present limiting case. 
For example, a linear equation for F2 can easily be derived and solved. We shall 
not pursue these calculations. 

11. Extensions to more realistic models 
One objection to the analysis for large-scale turbulence is the absence of a 

pseudostationary value for the burning-rate eigenvalue. This result stems from 
the choice of the reaction-rate function. It is possible to investigate the effects 
of adopting a more realistic reaction-rate function by considering 

w = wo Y y  1 - Y)n. 

Following averaging procedures analogous to those given earlier, one can con- 
clude that in this case at least three differential equations must be retained for 
calculating the burning rate; the new equation is for y'2. The equations are 
coupled non-linearly through terms that do not involve x derivatives. Unless 
rn and n are both small ( 5  1), one must retain more than three equations. 
Equations for PI3, YI4 ,..., Y'm+n will enter, and those through Y'k (for some 
definable k < m + n) will be important. Large values of n, 10 to 15, are of interest 
because the (1 - Y)n factor approximates the effect of an activation energy. 
Thus, the complexity of this type of turbulent flame-speed calculation increases 
as the model is made more realistic. However, there seems to be no fundamental 
barrier in pursuing this line of extension. The system of coupled ordinary differen- 
tial equations can be solved by available finite-difference routines on digital 
computers. Turbulence problems such as those associated with the determination 
of do not arise. 

Although we have not discussed the energy conservation equation, extensions 
of the type just indicated should provide qualitative information about its 
solution. It would also be of interest t o  write the proper statistical energy con- 
servation equation for systems with non-negligible heat release and to investigate 
the modifications in the type of approach developed herein that would be needed 
to analyze it. Studies analogous to those indicated in the preceding paragraph 
should be able to elucidate the effect of the reaction-rate term in the energy con- 
servation equation. The effect of the heat release on the velocity field, which will 
also come into the correct energy equation, is expected to be somewhat more 
difficult to handle. 

It will probably be considerably more difficult to analyze systems with large 
turbulent velocity fluctuations (8 2 1). 

-- 

I am indebted to many colleagues, notably S. Corrsin, C. Gibson and A. Klimov, 
for helpful comments and discussion concerning this work. This research was 
sponsored by the Air Force Office of Scientific Research, Office of Aerospace 
Research, United States Air Force, under AFOSR Grant no. AF-AFOSR- 
927-68. 
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Appendix A. Symmetry 
I n  the subject of homogeneous isotropic turbulence, geometrical symmetries 

afford a considerable simplification in analyses of turbulent dynamics. It is 
clearly of interest to inquire whether the symmetries of the present problem can be 
comparably helpful. From the difficulties encountered in attempting rigorously 
to relate incompressible, non-reacting grid-produced turbulence to incom- 
pressible, homogeneous, isotropic turbulence, it should be apparent that few 
useful results will be obtainable from symmetry considerations alone and that 
a much smaller number of symmetry relationships will hold for the present system 
than for a homogeneous, isotropic system. We merely point out a few conse- 
quences of the symmetry of the present problem. 

The turbulence in the problem under study is stationary and axisymmetric. 
The first of these adjectives means that the statistical properties of the fields are 
independent of time. As used here, the second means only that, at  any given 
axial position x, the statistical properties of the fields are independent of the 
other two Cartesian co-ordinates y and x ;  it does not imply invariance upon 
reflexion in planes normal to the x axis as is sometimes included in the defini- 
tion of the term ‘axisymmetric ’ (Chandrasekhar 1950). A consequence of 
these observations is that in order to initiate a theoretical study of the present 
problem analogous to the existing theory of homogeneous turbulence it is 
advisable to introduce multipoint ensemble mean values in which the y, x and t 
values of the points may differ but the x values of the points are all the same. 
Fourier transforms of the various mean quantities with respect to y, z and t can 
be introduced, but a transform with respect to x, which is analogous to  the t 
co-ordinate of homogeneous turbulence, is not acceptable. It would be acceptable 
if we could invoke a mean-speed convection hypothesis of the type that Taylor 
and others used for grid turbulence, but we must retain the possibility of rapid 
x-wise changes in the statistical properties of the turbulent field which may be 
induced by a thin flame. The transform method is not introduced in this paper 
because it does not appear to be either necessary or helpful for our purposes. 

The symmetry of the problem implies translation and reflexion invariances in 
y, x and t and rotation invariance in the y, z plane. These invariances impose 
certain restrictions on multipoint ensemble means. For example, a two-point 
(x, yl, z,, t,; x, yz, zz, tz)  scalar mean is a function of only the three independent 
variables x, [(y2- yJ2+ ( Z , - . Z ~ ) ~ ] ~  and l t 2 - t l [ ,  as is the x component of a two- 
point vector mean and the xx component of a two-point second-rank tensor 
mean. The y component of a two-point vector mean is the product of (y2-y,) 
with a function of the same three independent variables, and the z component 
is the product of (x2  - zl) with the sume function of the same three independent 
variables. This remark also applies to the xy and xz components of a two-point 
second-rank tensor mean and (separately) to the yx and xx components of a 
two-point second-rank tensor mean. The yz and zy components of a two-point 
second-rank tensor mean must be equal and are given by (y2 - yl) ( x z  - xl) times 
a function of the three independent variables indicated earlier, while the yy and zx 
components of a two-point second-rank tensor mean are given, respectively, 
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by A + (yz - B and A + (z2 - z1)2 B, where A and B are functions of the three 
independent variables identified previously. Only certain of the simplest con- 
sequences of these observations are required in the development; for example, 
we employ the rather obvious fact that the y and x components of a one-point 
vector ensemble mean must vanish. 

Appendix B. The laminar flame speed 
It may be appropriate to state explicitly a few basic assumptions that pervade 

our entire development and help to define the system under investigation. We 
consider only one-step reactions in ideal gas mixtures. Body forces, radiative 
heat transfer, energy and species losses from the system anywhere except at  the 
grid, the Soret and Dufour effects and diffusion caused by pressure gradients are 
all neglected. The ensemble-mean ordered kinetic energy is neglected in com- 
parison with the ensemble mean thermal enthalpy here and in $ 3 .  

Under the preceding assumptions, it is known that the laminar flame speed 
is governed in essence by an equation resembling the non-homogeneous diffusion 
equation. Whether the dependent variable in this equation is temperature, 
thermal enthalpy, concentration of a reactant, concentration of a product, etc., 
depends largely on the taste of the investigator; simple relationships exist among 
these variables under assumptions that are not unrealistic, and even if the 
necessary assumptions are not imposed, so that the relationships among the 
variables involve differential equations, freedom in the choice of the variable 
employed for obtaining the flame speed still exists for realistic ideal gas mixtures. 
We choose the mass fraction Y of a representative reactant as the dependent 
variable in the equation determining the flame speed. 

For steady laminar flow in the x direction, (1) reduces to 

where m = pv (v = component of v in the x direction) is the (constant) mass flow 
rate per unit area. For a laminar flame, appropriate boundary conditions for 
(B 1) are 

(B 2) / Y =Yo, d Y / d x =  Y,!, at x =  0, 

Y = Y ,  at x = m ,  

where Y,, Y,!, and Y, are specified c0nstants.t Although it is not obvious from 
the equation and the boundary conditions, it follows from laminar flame theory, 
after p D  and w are related to Y by solving the appropriate equations, that there 
exists a solution to (B 1) subject to  the specified boundary conditions only for 
a unique value of riz, see Williams (1965, chapter 5). This eigenvalue m is the 
laminar burning velocity (multiplied by the upstream density). The solution for 
r i ~  demonstrates that the laminar burning velocity is of the order of 

WL 3 [ ~ ( W , / P ) l t  (B 3) 

t Thc choice of x = 0 as the ‘cold boundary’ and the specification of both Yo and Y,’ 
remove the ‘cold boundary difficulty ’. 

27-2 
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and that the thickness of the laminar flame is of the order of 

8, = "wo/p)14 (B 4) 
where p and D are evaluated in the unburnt mixture and where wo is the maxi- 
mum value of w, divided by Yo. 

Appendix C. Analysis in the limit of large-scale turbulence 

pendent variables f E F/& and g = (v') V/Yov", (12) and (19) become 
In  terms of the dimensionless independent variable 7 = xE/D, and the de- 

and 

where I? = Dw0/E2p and E = v3/V2. The quantity I? is the burning-rate eigenvalue, 
while e measures the (known) turbulence intensity. The boundary conditions 
for (C 2 )  and (C2) are 

f = 1, d f l d y  = - p  and g = g o  at  7 = 0, 

f = g = O  at 7 =a, 

where /3 E -DYJYo@, and go E ( v ' ) o z ) / Y o ~ 2  are presumed to be specified 
constants. The mathematical problem is to solve (C 1) and (C2) subject to the 
boundary conditions given in (C 3),  and to obtain the eigenvalue I?. 

To interpret the solution to this turbulent problem properly, it  is necessary to 
have the solution to the corresponding laminar problem. The laminar problem 
is easily defined by setting B = 0 and by ignoring the equation for g. It is easy to 
show that the laminar solution is 

where 

(C 3) } 

f L  = eaLq, (C 4) 
aL = -4(,/(i+4rL)-i) = - p  L ,  

and that rL = PZ + PL. (C 5 )  
Clearly, a pseudostationary solution for rL is not obtained; the value of P L  
depends on the value of the initial non-dirnensional concentration gradient PL. 
Only positive values of PL are acceptable. 

Although it is possible to obtain solutions to (C I ) ,  (C 2) and (C 3) for arbitrary 
values of E ,  it is appropriate to consider only cases in which E < 1, because this is 
a premise on which the derivation of these equations was based. VCThen E < 1, the 
quantities f and r in (C 1) will be expressible in the forms f = f L +  ef1 and 
I' = l', + er l ,  where f1/fr, and rl/rL are of order unity. We shall also permit ,8 
to differ from FL to order E, writing p = pL+cpl .  The first-order expansions of 
(C l), (C 2) and (C 3) then become 
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(C 8) 
fl = 0, df,/dy = -P1 and q = yo at 7 = 0, 

f 1 = q = O  at 7 = co. 

By substituting (C 4) and (C 5 )  into (C 7),  it is readily found that the desired 
solution for g is 

Substitution of this result and of (C 4) and (C 5) into (C 6) leads eventually to the 
result that in order to satisfy (C 6) and (C 8), one must have both 

and 

Equation (C 1 1 )  provides the desired solution for the effect of turbulence on the 
flame speed. 

To observe the meaning of (C 11), it is convenient to represent the result as 
the fractional change in flame speed produced by turbulence. In view of the 
definitions of r and of rl this fractional change is expressible as 

(vT - +)/uL = - (r - rL)/2rL = - q 2 r L  

when it is small. Equations (C 5) and (C 11) therefore imply that 
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